Chapter 13
| Go from: | Δy Δx | ≈ f ′(c) | to | Δy ≈ f ′(c) Δx to dy = f ′(c) dx |
| where the separate dy and dx are not identical to the single symbol dy/dx. | ||||
| dw dt |
= | ∂w ∂x |
dx dt |
+ | ∂w ∂y |
dy dt |
| dw ds |
= | ∂w ∂x |
∂x ∂s |
+ | ∂w ∂y |
∂y ∂s |
and | dw dt |
= | ∂w ∂x |
∂x ∂t |
+ | ∂w ∂y |
∂y ∂t |
f(x,y)= fx(x,y)
i + fy(x,y) j
f(x,y) • u
f(x,y) || ||u|| cos(φ)
f(x,y) || cos(φ)
f(x,y)=0, then Duf(x,y) =0 for all u
f(x,y).
The maximum value of Duf(x,y) is
||
f(x,y)||.
f(x,y).
The minimum value of Duf(x,y) is
– ||
f(x,y)||.
f(x,y,z) =
fx(x,y,z) i +
fy(x,y,z) j +
fz(x,y,z) k
f(x,y,z) • u
F(x0,y0,z0) • r′(t0)
F(x0,y0,z0)≠0, then
F(x0,y0,z0)
is called the tangent plane to S at P, and
F(x0,y0,z0) is called the normal line to S at P.
`S_a(a,b) = 2aSigma_(n=1)^n(x_i^2) + 2bSigma_(i=1)^n(x_i) -2Sigma_(i=1)^n(x_iy_i)`
`S_b(a,b) = 2aSigma_(i=1)^n(x_i) +2nb -2Sigma_(i=1)^n(y_i)`.
©Roger M. Palay
Saline, MI 48176
June, 2012