Chapter 15
Section 15.6: Surface Integrals
`bbN = (grad G(x,y,z))/(||grad G(x,y,z)||)`
`bbN=(-g_x(x,y)bbi - g_y(x,y)bbj + bbk)/(sqrt(1+[g_x(x,y)]^2 + [g_y(x,y)]^2))`
or
`bbN = (-grad G(x,y,z))/(||grad G(x,y,z)||)`
`bbN=(g_x(x,y)bbi + g_y(x,y)bbj - bbk)/(sqrt(1+[g_x(x,y)]^2 + [g_y(x,y)]^2))`
`bbN = (bbr_u x bbr_v)/(||bbr_u x bbr_v||)`
or
`bbN = (bbr_v x bbr_u)/(||bbr_v x bbr_u||)` [incorporating the negative in the change in order].
`int_SintbbF•bbN\quad dS`
`int_SintbbF•bbN\quad dS = int_Sint bbF•[-g_x(x,y)bbi - g_y(x,y)bbj + bbk]\quad dA` upward
`int_SintbbF•bbN\quad dS = int_Sint bbF•[g_x(x,y)bbi + g_y(x,y)bbj - bbk]\quad dA` downward
©Roger M. Palay
Saline, MI 48176
July, 2014