Chapter 15
Section 15.2: Line Integrals
`int_C f(x,y)ds = lim_(||Delta||rarr0)sum_(i=1)^nf(x_i,y_i)Delta s_i`
or
`int_C f(x,y,z)ds = lim_(||Delta||rarr0)sum_(i=1)^nf(x_i,y_i,z_i)Delta s_i`
provided the limit exists.
`int_C f(x,y)ds = int_a^b f(x(t),y(t)) sqrt( [x^'(t)]^2 + [y^'(t)]^2 ) \quad dt`.
If `C` is given by `bbr(t) = x(t)bbi +y(t)bbj +z(t)bbk` where `a <= t <=b`, then
`int_C f(x,y,z)ds = int_a^b f(x(t),y(t),z(t)) sqrt( [x^'(t)]^2 + [y^'(t)]^2 + [z^'(t)]^2) \quad dt`.
However, we note that `sqrt( [x^'(t)]^2 + [y^'(t)]^2 + [z^'(t)]^2)` is `||bbv(t)||` so we
can rewrite the integral as
`int_C f(x,y,z)ds = int_a^b f(x(t),y(t),z(t))\quad ||bbv(t)|| \quad dt`.
`int_CbbF•dr = int_C bbF•bbT ds = int_a^b bbF(x(t),y(t),z(t))•bbr^'(t) dt`.
Some worked problems.
©Roger M. Palay
Saline, MI 48176
July, 2014