Topic 11: Probability

One of the first and most important points about probability is that probability is always a value
between 0 and 1, inclusive. If, for a probability question you get and answer that is less than 0 or
greater than 1 then yvour answer is wrong!

There is a small caution to demonstrate here. R displays numbers
that are really close to 0 by using a scientific notation. Look at the
following command and the associated console output.

4

probability is always between 0 and 1

3

4 #

5 # demonstrate a small "catch" to this, namely
6 # that R expresses really small, close to 0,
7 # values in "scientific" form. For example,
8 look at the number 0.00000006478.

9 0.00000006478

He

probability is always between 0 and 1

that R expresses really small, close to 0,
values in "scientific" form. For example,
# look at the number 0.00000006478.
= 0.00000006478
[1] 6.478e-08
The 6.478e-08 means 6.478 times 10 to the minus 8 power.
To convert this back to non-scientific form we would need
to move the decimal point 8 places to the left.

0000006.478

#
#
# demonstrate a small "catch" to this, namely
=
#

MoV ONLY N Y

In statistics when we say something is an experiment we mean that it is a non-deterministic task. It is
something that we can repeat again and again, each time getting a result, but where we can never be
sure, before we run the experiment, of the exact result that we get.

An experiment can be performed many times. A trial is just one of those times.

11
12
13
14
15
16
17
18
19
20

we will run 4 trials of the experiment of

getting 5 random values between 1 and 99.

Note that if you run this script then you

will get different results than are shown

here. Sort the values to make it easier to
inspect the lists.

o W W W

sort( as.integer( runif( 5, 1, 100)) )

sort( as.integer( runif( 5, 1, 100)) )

sort( as.integer( runif( 5, 1, 100)) )

gort( as.integer( runif( 5, 1, 100)) )
= # we will run 4 trials of the experiment of
> # getting 5 random values between 1 and 99.
> # Note that if you run this script then you
> # will get different results than are shown
> # here. Sort the values to make it easier to
= # inspect the Tists.

> sort( as.integer( runif( 5, 1, 100)) )
[11] 2 48 55 73 79
> sort( as.integer( runif( 5, 1, 100)) )
[11 & 55 66 77 95
> sort( as.integer( runif( 5, 1, 100)) )
[1] & 17 44 69 91
= sortl as.intéger( rumitC 5, 1, 1003) 3
[1] 1 10 16 36 49




Each trial in an experiment has an outcome. The collection of all possible outcomes is the sample space.

There are times when it is helpful to actually write out a sample space, just so that we can see all of the
possibilities and perhaps count how many of certain outcomes appear in the sample space.

Here is the sample space for a game where we have two boxes. a red and a blue one, and in each box we
have eight slips of paper, one for each of the values 1 to 8, with the name of the number on the slip. We
draw a slip from each box. The outcome is the number of distinct lefters in the combined names.

Number on slip of paper in blue box

number
distinct
letters

w
3

three | four five

=]
=
(2]
=l
=]

seven | eight

th
th

one
two
three
four
five
six
seven
eight

| S [Sh|Sh[th]Ww

number on slip of paper in red box
e S BE=N N R N RN

=N B B R N R R
N=RE--REN RENEE S | R K=
e NI R R B B R B =)
e NI R - NE B R =0 -
O Oy (00 1|

L RE--RIES B R -RE- N B

~1

There are 64 possible outcomes. Exactly 4 of the outcomes are the value 8. This makes the probability
of getting an answer of 8 to be 4/64=0.0625. There are exactly 25 outcomes that are 7. Therefore, the
probability of getting an answer of 7 is 24/64=0.375. There are 0 outcomes that are 10. Therefore, the
probability of getting an answer of 10 is 0/64=0. There are 64 outcomes that are 9 or less, so the
probability of getting an answer that is 9 or less is 64/64=1.

There are many times when the possible outcomes in the sample space are made up of separate choices.
For example consider the case where we draw a slip of paper from either the blue hat (getting one of
the numbers one through eight), flipping a coin (getting a ""head" or a "'tail"), and picking a fruit from a
bowl of 5 different fruits (O=orange, P=pear, A=apple. G=grape, and L=lime). Then our sample space is
all the possible triplets of values (a number, a H or T, a fruit). One such outcome would be (4,H,P). We
might ask, how many different outcomes are there? That answer would be 8*2*5=80.

We can see an example of this in R.

22 # Set up three different choices
23 blue_hat <- ¢(1,2,3,4,5,6,7,8)

24 ‘coin <= c("H","T™)

2l Truit <— (™0™, "p, "A",e" L")

26 # Get thee sample space of an item
27 # taken from each choice

28 gxpand.grﬁd( blue_hat, coin, fruit )

# Set up three different choices
blue_hat <- ¢(1,2,3,4,5,6,7,8)
cotsi= EMHY, TN
FPUTE 2= e0007, P ARG T

# Get thee sample space of an item

# taken from each choice
expand.grid( blue_hat, coin, fruit )

Varl Var2 \Var3

N RN R

A 4 H 0
2 2 H 0
3 3 H 0
4 4 H 0

Continued below:



5 5 H 0 25 1 T P 45 ] T A 65 1 H I,
(4] 6 H 0 26 2 T P 46 b T A 06 2 H 15
7 7 H 0 27 3 T P 47 74 T A 67 3 H I,
8 8 H 0 28 4 T P 48 8 T A 68 4 H I=
9 1 T 0 29 5 T p 49 1 H G 69 5 H L
10 2 T 0 30 4] T P 50 2 H G 70 4] H I=
i 8 3 T 0 31 7 T P 5 3 H G 71 7 H I,
12 4 T 0] 32 8 T p 52 4 H G Fav. 8 H L
13 5 T 0 33 1 H A 53 ] H G 73 1 F I,
14 b 25 0 34 2 H A 54 b H G 74 2 T Is
1D 7 T 0 35 3 H A 55 74 H G 75 3 F I,
16 8 5 0 36 4 H A 56 8 H G 76 4 T 15
17 1 H P 37 5 H A 57 1 T G 77 5 T L
18 2 H P 38 o H A 58 2 T G 78 4] s I
19 3 H P 39 7 H A 59 3 T G 79 7 F L
20 4 H P 40 8 H A 60 4 T G 80 8 T L
21 5 H P 41 1 T A 61 5 § 7 G
22 9] H P 42 2 T A 62 5] T G
23 7 H P 43 3 T A 63 7 § 7 G
24 8 H P 44 4 T A 64 8 T G
We see all 80 of the different nossible outcomes.
Blue Hat Coin Fruit
numb.m of 3 5 5

choices

Size of

sample 8 times | 2times | S equals| 80

space

A different situation is where we might just choose a fruit from our selection. However, instead of
just choosing one fruit we will choose three of them. (We will do this without replacing any of the
fruit that we have chosen, building our outcome to hold three fruit items.) This is a different process.
We will have 5 choices for our first pick, but only 4 for the second, and then only three choices for
the third. Thus the number of different triplets of fruit would be 5%4*3=60. This is a situation of
finding the number of permutations of things. In permutations the order of the choice matters. We
can get R to find all of the permutations of our five fruits although we will have to import a few new
tools to do this..

30
31
32
33
34
35

# look at permutations
# we need to load a special package to get
# the function we want.

install.packages("gtools")
Tibrary(gtools)

> # look at permutations
> # we need to load a special package to get
> # the function we want.

> install.packages ("gtools")

WARNING: Rtools is required to build R packages but is not currently installed.
Please download and install the appropriate version of Rtools before proceedin
g:

https://cran.rstudio. com/bin/windows/Rtools/

Installing package into ‘C:/Users/rpala/Documents/R/win-library/4.0’

(as ‘Tib’ is unspecified)

trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.0/gtools_3.8.2.zip'
Content type 'application/zip' length 336236 bytes (328 KB)

downloaded 328 KB

package ‘gtools’ successfully unpacked and MD5 sums checked



35
36
37
38
39
40

The downloaded binary packages are 1in
C:\Users\rpala’\AppData\Local\Temp\RtmpATr7Ny\downloaded_packages
> library(gtools)

# recall the values in fruit
fruit

# Now that we have the Tibrary installed we

# can use the function permutations to get the

# permutations of our 5 fruits taken 3 at a time.
permutations( 5, 3, fruit )

% # recall the values in fruit
> fruit
[l] "O" ”P” '|'I'A'I'I‘ IIGII IILII
= # Now that we have the library installed we
> # can use the function permutations to get the
> # permutations of our 5 fruits taken 3 at a time.
> permutations{ 5, 3, fruit )
Ll L2l (.2 U U
Ll o e 22: 5 e i Vinllls (41,1 "6™ "g" ‘o
[2,] "A” "G" "0" [22,] |IGI'II IIPII IIAII [42,] ||0” ||G|| ||p||
[3:.1 "A” "G" "P" [23. 1 "™ "p™ =" (43,1 "o" "L" "A"
[4.] "A” "L" "G" [24,1 "¢" "p" "oO" 44 "o " M"Y
[5,] "A” "L" "O" [25,] |ILTI "A" IIGII [45,] "O” ||L|| "P"
[6;] "A” "L" "P" [26,] "L” "A" ”0" [46,] IIOH IIPII "A"
(7,1 "A” "O" "G" | 927 e ol - il 47;]1 "o Mp" U"G"
[8,] "A” "O" "L" [2a.] "L® gt A [48,] "o" ‘"p" "L"
[9,:[ "A” "0" "P" [29,] "L” "G" "O" [4911 "P” "A" ||G||
[10,] "A” "P" "G" L3001 W¥ tgi Hpr [50,] "P" "A"™ "_"
(11,1 "A” "P" IlLIl [31.7 m.® g™ =" (51,1 "P" "A" "o"
[12;] "A” "P" "0" [32,] "L” "0" "G" [5211 ||Pr| IIGII "A"
[13,] "G” "A" "L" [3a.1 "% ©p= wpo [53.1 "p" "g" "
[14,] "G” "A" "O" [34,] "L" "p" "a" [54,] "P" "G" "Q"
(15,1 "G” "A" "p" 35,0 "2 "R T [55;] "pY ML UAM
[16,] "G” "L" "A" [36,] |ILI'II IIPII lloll [56,] "P” ||L|| ||G||
[17 .1 "G” IILII "O" [37.1 "o® "A" “g" (57,1 "p" "L" "o"
[18,] "G” "L" "P" 138..1 e "al MLF [58,]1 "p" "g" "A"
[19,] "G” "0" "A" [39,] |I0'H "A" "P" [59,] "P” ||0|| ||G||
[20,] GI 3 S J40:. 0 287 "ah AT i6o,1 "p™ "a" "pL"
| I

We compute the number of permutations of 8 things taken 3 at a time as 8%7*%6 = 336,
because we have 8 choices for the first item, bit only 7 remaining choices for the second, and
just 6 remaining for the third.

Take a small diversion here. we write 87%6%5%4%3*2*1 as 8! which is read as 8 factorial.
We read 6! as six factorial and we know that 6!=6*5*4*3*2*1=720. We can even get R to do
this with the factorial() function.

41 # demonstrate factorial()
4?2 factorial(8)

43 factorial (6) z
S # demonstrate factorial()

> factorial(8)
[1] 40320

> factorial(e)
[1] 720

In general terms, for the number n we have
n! =n*(@m-1)*({@0-2)*(0-3)*...*3*2*1
However, there are some special cases. First 1! =1 and, more surprising, 0! is, by definition, 1.

44 # look at the surprising case
45 factorial( 0) > # lock at the surprising case

> factorial( 0)
[1] 1




Now that we know about factorials we can observe that

ge7eg — 8*7*6*5*q*3*2+1 8! _ 8!
gxq*3x3%x] 5! (8-3)!

This generalizes to the formula for the number of permutations of n things taken r at a time:
n!
T )
We could use the factorial() function and this formula to find, in R, the number of
permutations of 19 things taken 4 at a time.

46 # find the number of permutations of 19 things
47 # taken 4 at a time
48 factorial( 19 )} / factorial( 19-4 )
> # find the number of permutations of 19 things
> # taken 4 at a time
> factorial( 19 ) / factorial( 19-4 )
[1] 93024

This is all well and good, but some of us do not want to have to remember the formula. To that
end we have some functions that will help. We will load the functions into the environment.

49 # load all of the related functions into the
50 # environment
51 gource("../combinaticns.R")

% # load all of the related functions into the
> # environment

> source("../combinations.R")

> |

Now the environment looks like:

1 Global Emvironment =

Values

blue_hat num [1:8] 1 2 3 4567 8

coin e Fle2] “HE S

fruit chire [A.25] Pgh Mpst i S
Functions

ncr function (n, r)

nPr function (n, r)

num_comb function (n, r)

num_perm function (n, r)

Two of the newly added functions can help us. nPr() and num_perm() both compute the
number of permutations of n things taken r at a time. They happen to compute the answer in
different ways. One is not better than the other. (See the web page to check out the different
approaches.) We will use both on the previous problem, just as an example.

52 # compute the answer to the previous problem
53 # using the two functions nPr( and num_perm().
54 nPr( 19, 4)

55 num_perm( 19, 4 )

5 # compute the answer to the previous problem

> # using the two functions nPr() and num_perm().
> nPr( 19, 4)

[1] 93024

> num_perm( 19, 4 )
[1] 93024



One thing to notice about permutations is that order is important. In the list of the permutations
of the fruits we find all of the following triplets:
[l,] IIAII' "G" IILII

[4:1 MAY L% g Notice that there are 6 versions here. This is not surprising
(1351 e" AT e since there are 6 arrangements (i.e., permutations) of 3 things
Pie] Heh Mot Al taken 3 at a time. In fact, for any triple in the list of
B2a1 B At el permutations above there are 5 other triples with exactly the
(28,1 "™ "&" "AY same fruits, just in a different order.

A different experiment would be to take our fruit, again select 3 items, but this time we do not
keep track of the order in which the items are chosen. Now, order is not important. In this scheme
the values AGL, ALG, GAL. GLA. LAG, and LGA are considered identical. It is as if we are
making a fruit salad. We do not care which fruit comes first. In the end the selections are just
mixed up. This is an example of looking at combinations. Because we loaded "gtools" before, we
have access to the function combinations(). We will get the combinations of the 5 fruits taken 3 at
a time.

56 # get the combinations of the 5 fruits taken

57 # 3 at a time

58 gombinations( 5, 3, fruit)
> # get the combinations of the 5 fruits taken
> # 3 at a time

> combinations( 5, 3, fruit)
Lol L2l .31
e Sl e
[2.]
[3,]
[4,]
[5,]
[6,]
7]
[8,]
[9,]
[10,]

AN AN S 3 S

ol et T8 ot ol oY B

| 5
[¢]
p
]
1 Ilp
p
(o]
p
p

S

Ilpll

Remember that each of the combinations just given would produce 6 permutation. Therefore, the
number of combinations will be equal to the number of permutations of 5 things taken 3 at a time
divided by the number of permutations of 3 things taken 3 at a time. The formula, in general terms,
for the number of combinations of n things taken r at a time is given as

( ) C’ (@)t t}'*l'

That means that we could solve the problem of finding the number of combintions of 17 things
taken 6 at a time using the factorial() function.

59 # find the number of combinations of 17 things
60 # taken 6 at a time
61 Tfactorial( 17 ) /(factorial(17-6)*factorial (6))
5 # find the number of combinations of 17 things
2 # taken 6 at a time
> factorial( 17 ) /(factorial(17-6)*factorial(6))
[1] 12376

But that requires us to remember the formula. Instead, we could use either nCr() or num_ comb(),
functions we loaded before, to get that number.

62 # do this with the functions nCr and num_comb

GllncnC 17 6 )

64 num_comb( 17, 6 ) > # do this with the functions nCr and num_comb
= el 17, '6 )
[1]1 12376

> num_comb( 17, 6 )
[1] 123786



