Table of Finding Probabilities: Continuous Distributions


Return to Topics page
Problem
Statement
P( X < A ) P( X > A ) P( A < X < B ) P( X < A  or  X > B )
This assumes A<B.
Restatement
using only <  
P( X < A ) 1 - P( X < A ) P( X < B ) – P( X < A ) P( X < A ) + 1 - P( X < B )
Standard
Normal
N( 0, 1 )
pnorm( A ) 1 – pnorm(A)
or
pnorm( A, lower.tail=FALSE )
pnorm( B ) – pnorm( A ) pnorm( A ) + ( 1 – pnorm( B ) )
or
pnorm( A ) + pnorm( B, lower.tail=FALSE)
Non-Standard
Normal
N( C, D )
pnorm( A, mean=C, sd=D) 1 – pnorm(A, mean=C, sd=D)
or
pnorm( A, mean=C, sd=D, lower.tail=FALSE )
pnorm( B, mean=C, sd=D ) – pnorm( A, mean=C, sd=D ) pnorm( A, mean=C, sd=D ) + ( 1 – pnorm( B, mean=C, sd=D ) )
or
pnorm( A, mean=C, sd=D ) + pnorm( B, mean=C, sd=D, lower.tail=FALSE)
Student's t with E degrees of freedom pt( A, E) 1 – pt(A, E)
or
pt( A, E, lower.tail=FALSE )
pt( B, E ) – pt( A, E ) pt( A, E ) + ( 1 – pt( B, E ) )
or
pt( A, E ) + pt( B, E, lower.tail=FALSE)
χ² with E degrees of freedom pchisq( A, E) 1 – pchisq(A, E)
or
pchisq( A, E, lower.tail=FALSE )
pchisq( B, E ) – pchisq( A, E ) pchisq( A, E ) + ( 1 – pchisq( B ,E ) )
or
pchisq( A, E ) + pt( B, E, lower.tail=FALSE)
Return to Topics page

©Roger M. Palay     Saline, MI 48176     October, 2018