
Quartile Points 

The mean, median, and mode of a data list give us some ideas 
of what we could define as the “center” of the data.  Now, we 
want to look at how we can get an idea of the “spread” of the 
data.  That is, we want some way to describe how the data is 
arranged around these measures of the “center”.  One way to 
look at the “spread” of the data is to simply look at the lowest 
and highest values of the set, the “range.”  Expanding on that a 
bit, we can also look at the quartile points of the data.   

 

Range: The range of the data is just the low and the high 
values of the data.  Naturally, to do this there must be some 
order to the data.  For the list of values, which we will call A, 
A=[4, 8, 6, 13, 8, 2, 8], we can see that the range gives the low 
value as 2 and the high value as 13.  We might recall that the 
mean of these values is 7, the median is 8, and the mode is 8.  
Here is another list of data B=[1,8,2,20,8,2,8].   Again, the mean 
is 7, the median is 8, and the mode is 8, but now the range is 1 
to 20.  Knowing the range gives an idea that this data could be 
more spread out than was the data in list A.  Or, for the list  

C=[-44,8,-25,100,8,-6,8], which still has the mean=7, the 
median=8, and the mode=8, the range is now -44 to 100, giving 
us an idea of the spread of the data.  The range is highly 
influenced by extreme values, it’s actually DEFINED by them. At 
best it gives us an idea of the possible values in the data list.   

 

Let us look at a much larger data list.  In the discussion of the 
median we found out that the range of the age of the 12,608 
students in a particular semester at the college was 13 to 84.   



Quartile Points:  While the range gives us the highest and 
lowest values, it still leaves us guessing about how the values 
are spread within that range.  Quartile points help give us a 
better idea of the way the values are spread.  We will start with 
three quartile points Q1, Q2, and Q3.  Q2 is the median value.  
Remember that the median, now known as Q2, is the value that 
has half the other values below it and half above it in a sorted 
list of the values.  We will choose Q1 to be the value in the 
sorted list that has a quarter of the values below it and three 
quarters of the values above it.  In essence, Q1 is the “median” 
of the sub-list of values that are less than Q2.  In the same way, 
the third quartile, Q3, is the “median” of the sub-list of values 
that are greater than Q2.  Thus, Q3 is the value in the sorted list 
that has ¾ of the other values below it and ¼ of the values 
above it. 

 

Let us look at an example.  Consider the sorted data list D=[2, 2, 
4, 5, 6, 7, 7, 9, 11, 14, 16, 16, 21, 23, 24, 26, 28, 28, 29].  There 
are 19 values in this list so Q2 is the tenth item, or 14.  That 
leaves us with 9 items less than Q2 and the median of those 9 
items will be the fifth item, namely Q1=6.  The median of the 9 
items above Q2 will be the fifth item in that sub-list, namely, 
Q3=24.  In general, Q1 has a quarter of the values less than it 
and three quarters of the values greater than it.  Q2 has half the 
values less than it and half the values greater than it.  Q3 has 
three quarters of the values less than it and one quarter of the 
values greater than it.   

 



Now that the concept of the quartile points makes some sense, 
let us recall that we had a special case computing the median.  
In particular, if we had an even number of items in the list then 
the median became the average of the two middle items.  If we 
have a list E that is the same as list D but with the 29 removed, 
then list E would have 18 elements and the median, Q2, would 
be the average of the 9th and 10th items, or 
(11+14)/2=25/2=12.5.  Then we would still have 9 items below 
the median and 9 above so Q1=6.  However, even though there 
are 9 elements above the median, the median is now 12.5 and 
the first element greater than the median is item 10.  
Therefore, the fifth item in the sub-list of items greater than Q2 
is now Q3=23.  But, what if we had list F that is the same as list 
D but with the value 31 added to the list.  Then list F has 20 
elements and the median would be the average of the two 
middle elements, namely Q2=(14+16)/2=30/2=15.  But that 
leaves us with an even number of values below Q2 and an even 
number above Q2.  Now, Q1 will be computed as the average of 
the two middle elements in the lower half of the list, namely, 
Q1=(6+7)/2=13/2=6.5.  In a similar fashion, 
Q3=(24+26)/2=50/2=25.   

 

Having explained all of that we need to add that the method 
described here is not the only method of calculating the 
quartile points.  There are at least three different methods, the 
one described here being the easiest to implement.  The 
complexity of the calculation masks the fact that in the real 
world, for a large data set, the methods will all amount to the 
same thing.  For example, in our data list of 12,608 students we 
know that the median age, 23, was buried in the pile of 683 



students of age 23.  If we compute Q1, using our methodology, 
we need to find the median of the student ages less than that 
median value, that is, the median of the 6304 youngest 
students.  That would make Q1 equal to the average of the ages 
in positions 3152 and 3153 of the sorted list of student ages.  
That means that Q1 is buried in the 1333 students age 19 whose 
ages occupy positions 1832 to 3164 of the sorted list.    The 
average of 19 and 19 is just 19, so Q1=19.  In the same way, Q3 
would be the average of items 9456 and 9457, but those two 
values are buried in the 254 students of age 31 whose ages 
occupy positions 9304 to 9557 of the sorted list.   The average 
of 31 and 31 is just 31 so Q3=31. 

 

We can slightly expand the quartile system by introducing Q0 
and Q4.  We define Q0 as the lowest value and Q4 is defined as 
the highest value.  Knowing these quartile values tells us a great 
deal about the “spread” of the values in the data list.  Naturally, 
this is more useful in a real data set.  For our student age 
example we have Q0=13, Q1=19, Q2=23, Q3=31, and Q4=82.  
From this we get a good idea that we have a huge 
concentration of student ages between 19 and 23, a bit more 
spread out ages both from 13 to 19 and from 23 to 31, and a 
more disbursed list of ages between 31 and 82.  We should 
note that what we have is a “feeling” about this, not a 
certainty.  The concept of quartiles gives us the feeling whereas 
a compilation of the data, perhaps a table giving each age and 
the number of students at that age, would tell us the reality. 


